1,021 research outputs found

    Toxicity testing: ecological relevance and relative efficacy and costs of toxicity tests in the South African context

    Get PDF
    The Direct Estimation of Ecological Effect Potential (DEEEP) is a suite of toxicological methods that was compiled to facilitate management of  effluent discharges. DEEEP used a range of tests to assess different endpoints and test taxa from differing trophic levels. It was used at pilot scale but never adopted in South Africa formally. The use of toxicological testing in managing effluent discharge has been somewhat ad-hoc since. This study examined a range of tests for undertaking toxicological assessments of effluent from the perspectives of ecological realism, test tractability, and cost of testing. The assays assessed include some from DEEEP, some using South African test taxa, and some using commercial toxicity test kits. Results indicate that, in terms of returned endpoints, no clear difference between tests using immobilized and cultured or wildcollected test taxa was present. Culture maintenance was found to be a significant contributor to test costs where cultured test taxa were used (although culture costs are implicit in test kit costs too). Costing analysis looked at scenarios where equipment could be shared and reused, and how these contribute to laboratory costs. The research leads on to suggestions for testing implementation in laboratories while maximizing ecological realism and  minimizing costs. Keywords: effluent management methodology toxicology&nbsp

    Pinning down the Glue in the Proton

    Get PDF
    The latest measurements of F2F_2 at HERA allow for a {\it combination} of gluon and sea quark distributions at small xx that is significantly different from those of existing parton sets. We perform a new global fit to deep-inelastic and related data. We find a gluon distribution which is larger for x \lapproxeq 0.01, and smaller for x∌0.1x \sim 0.1, and a flatter input sea quark distribution than those obtained in our most recent global analysis. The new fit also gives αs(MZ2)=0.114\alpha_s(M_Z^2) = 0.114. We study other experimental information available for the gluon including, in particular, the constraints coming from fixed-target and collider prompt Îł\gamma production data.Comment: 8 pages, LATEX, 6 figs available as .uu fil

    A review of the Dividend Discount Model: from deterministic to stochastic models

    Get PDF
    This chapter presents a review of the dividend discount models starting from the basic models (Williams 1938, Gordon and Shapiro 1956) to more recent and complex models (Ghezzi and Piccardi 2003, Barbu et al. 2017, D'Amico and De Blasis 2018) with a focus on the modelling of the dividend process rather than the discounting factor, that is assumed constant in most of the models. The Chapter starts with an introduction of the basic valuation model with some general aspects to consider when performing the computation. Then, Section 1.3 presents the Gordon growth model (Gordon 1962) with some of its extensions (Malkiel 1963, Fuller and Hsia 1984, Molodovsky et al. 1965, Brooks and Helms 1990, Barsky and De Long 1993), and reports some empirical evidence. Extended reviews of the Gordon stock valuation model and its extensions can be found in Kamstra (2003) and Damodaran (2012). In Section 1.4, the focus is directed to more recent advancements which make us of the Markov chain to model the dividend process (Hurley and Johnson 1994, Yao 1997, Hurley and Johnson 1998, Ghezzi and Piccardi 2003, Barbu et al. 2017, D'Amico and De Blasis 2018). The advantage of these models is the possibility to obtain a different valuation that depends on the state of the dividend series, allowing the model to be closer to reality. In addition, these models permit to obtain a measure of the risk of the single stock or a portfolio of stocks

    Transport Measurements on Nano-engineered Two Dimensional Superconducting Wire Networks

    Full text link
    Superconducting triangular Nb wire networks with high normal-state resistance are fabricated by using a negative tone hydrogen silsesquioxane (HSQ) resist. Robust magnetoresistance oscillations are observed up to high magnetic fields and maintained at low temperatures, due to the eective reduction of wire dimensions. Well-defined dips appear at integral and rational values (1/2, 1/3, 1/4) of the reduced flux f = Phi/Phi_0, which is the first observation in the triangular wire networks. These results are well consistent with theoretical calculations for the reduced critical temperature as a function of f.Comment: 4 pages, 3 figure

    Limited Lifespan of Fragile Regions in Mammalian Evolution

    Full text link
    An important question in genome evolution is whether there exist fragile regions (rearrangement hotspots) where chromosomal rearrangements are happening over and over again. Although nearly all recent studies supported the existence of fragile regions in mammalian genomes, the most comprehensive phylogenomic study of mammals (Ma et al. (2006) Genome Research 16, 1557-1565) raised some doubts about their existence. We demonstrate that fragile regions are subject to a "birth and death" process, implying that fragility has limited evolutionary lifespan. This finding implies that fragile regions migrate to different locations in different mammals, explaining why there exist only a few chromosomal breakpoints shared between different lineages. The birth and death of fragile regions phenomenon reinforces the hypothesis that rearrangements are promoted by matching segmental duplications and suggests putative locations of the currently active fragile regions in the human genome

    kt Effects in Direct-Photon Production

    Full text link
    We discuss the phenomenology of initial-state parton-kt broadening in direct-photon production and related processes in hadron collisions. After a brief summary of the theoretical basis for a Gaussian-smearing approach, we present a systematic study of recent results on fixed-target and collider direct-photon production, using complementary data on diphoton and pion production to provide empirical guidance on the required amount of kt broadening. This approach provides a consistent description of the observed pattern of deviation of next-to-leading order QCD calculations relative to the direct-photon data, and accounts for the shape and normalization difference between fixed-order perturbative calculations and the data. We also discuss the uncertainties in this phenomenological approach, the implications of these results on the extraction of the gluon distribution of the nucleon, and the comparison of our findings to recent related work.Comment: LaTeX, uses revtex and epsf, 37 pages, 15 figure

    Multiple-path Quantum Interference Effects in a Double-Aharonov-Bohm Interferometer

    Get PDF
    We investigate quantum interference effects in a double-Aharonov-Bohm (AB) interferometer consisting of five quantum dots sandwiched between two metallic electrodes in the case of symmetric dot-electrode couplings by the use of the Green’s function equation of motion method. The analytical expression for the linear conductance at zero temperature is derived to interpret numerical results. A three-peak structure in the linear conductance spectrum may evolve into a double-peak structure, and two Fano dips (zero conductance points) may appear in the quantum system when the energy levels of quantum dots in arms are not aligned with one another. The AB oscillation for the magnetic flux threading the double-AB interferometer is also investigated in this paper. Our results show the period of AB oscillation can be converted from 2π to π by controlling the difference of the magnetic fluxes threading the two quantum rings
    • 

    corecore